B RUSAG

Sensorik & messtechnische Entwicklungen AG

Chapfwiesenstrasse 14

CH-8712 Stéafa (Switzerland)

INTRA

Softwar e I nterface Definition Document

(SIDD)

BRUSAG Ref: INTRA/SIDD/1827-BRU Version 1.03 of 18-Jun-2010

ph: +4144 926 74 74 web: www.brusag.ch em: rbrusa@brusag.ch fx: +4144 926 73 34

B RUSASG

Doc.-No. INTRA/SIDD/1827-BRU

Version: 1.03
Date: 18-Jun-2010

Change Record

Date Version | Who | Description

08-Jul-08 1.00 RB | Draft started

02-Jul-09 1.01 RB | doc updated according to existing soft- and firmware resp.
03-Mar-10 1.02 RB | new parameter sun2rad in IROM —which now gets version 0x101
18-Jun-10 1.03 RB | Additional material on dynamic library Rpc_2.dIl added

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc

Doc.-No. INTRA/SIDD/1827-BRU
B RUSASG Version: 1.03
Date: 18-Jun-2010
Table of Contents

1 Introduction 1
1.1 Scope of this Document 1
12 References 1

2 Remote Procedures 2
21 Overview of Procedures 2
2.2 Proceduresin Rpc_2.dll 2
2.3 Data Structuresand Protocol 2
24 Thetransport protocol EDLP 4

3 Detailed Description of Procedures 5
31 WhoAml 5
32 Set ROMP 6
33 GetROMP 7
34 ROMPrw 7
35 SetDateTime 7
36 GetDateTime 8
3.7 SetMode 8
3.8 GetMode 8
39 SetPos 8
3.10 GetPos 9
311 GetSun 9
312 GetMem 10
313 SetMem 10
314 FindZero 10
3.15 ChkAxis 11

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc

Doc.-No. INTRA/SIDD/1827-BRU
B RUSAG Version: 1.03
Date: 18-Jun-2010
3.16 GetLog/ Clearlog 11
3.17 RunMotors 11
3.18 GetADC 12
3.19 SetLogMode 12
320 ResetLink (Rpc_2.dll only) 12
4 Glossary 13
File: G:\PROJEK TE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 3

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

1 Introduction

1.1 Scope of this Document

This document defines the software interface between INTRAS controller and a PC resident software.
Theinterface is based on remote procedure calls. We will use and follow as closely as possible — the
standards set for remote procedure callsin and by various RFCs.

Our first implementation of the RPC mechanism for the new controller will however not use TCP/IP as
transport mechanism, but a much simpler protocol used for serial links. We already used this protocol!
before for INTRA (firmware version 2.48) and more recently for MetNevis[1]

Most users will however not be willing to have to deal with the details of the protocol described in this
document. They will instead use our dynamic library (presently Rpc_2.dIl) which provides a software-
interface while hiding all lower level details. But even for these people, this document has something to
offer: Descriptions of the in- and outs- of the procedures included in RPC_2.dIl. And these are al of the
remote procedures specified here plus a PC-local procedure (ResetLink) which allowsto select the local
COM-interface and its configuration.

1.2 References

ID |Title Version & Date | Doc-1D

1 MetNivis — Software Interface Definition Document 18-Sep-06 SNOW/SIDD/
R. Brusa, BRUSAG CH-8712 Stéfa 427-BRU

1 AT91 ARM Thumb-based Microcontrollers 08-Oct-07 6120G-ATARM
ATI91SAM7X512, AT91ISAM7X256, AT91SAM7X128

2 Circuit Drawing INTRA Controller Board V2 June 2008 -

3 INTRA Software Definition Document (SDD) V 1.00 2-Jul-08 INTRA/SDD/
R. Brusa, BRUSAG CH-8712 St&fa 1826-BRU

4 INTRA Software Interface Definition Document (SIDD) |V 1.02 03-Mar-10 | INTRA/SIDD/
R. Brusa, BRUSAG CH-8712 Stéfa (this doc) 1827-BRU

5 Explanatory Supplement to the Astronomical Almanac; 1992 ISBN 0-935702-
Seidelmann, P. Kenneth, Ed. University Science Books 68-7
Mill Valley CA 94941

6 RPC: Remote Procedure Call Protocol Specification August 1995 RFC 1831
Version 2,;
R. Srinivasan, Status. PROPOSED STANDARD

7 XDR: External Data Representation Standard; August 1995 RFC 1832
R. Srinivasan. Status. DRAFT STANDARD

8 Binding Protocols for ONC RPC Version 2; August 1995 RFC 1833
R. Srinivasan. Status. PROPOSED STANDARD

9 Authentication Mechanisms for ONC RPC; September 1999 RFC 2695
A. Chiu. Status: INFORMATIONAL

1 EDLP ESTEC Datalink protocol

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 1

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

2 Remote Procedures

2.1 Overview of Procedures

Nane enum | Description

WhoAn 0 | returns firmware-identifying string

Set ROWP 1| upload rom-parametersto ram

CGet ROWP 2 | download rom-parameters from ram

ROVPr w 3 | rom parameters ram_copy r<-->w erom

Set Dat eTi ne 4| set RTC - date and time of day

Get Dat eTi me 5 | get date and time of day from RTC

Set Mbde 6 | set mode INIT, SUN, CLOCK or REMOTE
Get Mode 7 | get current mode and submode

Set Pos 8| set new targets

Cet Pos 9 | get mode and positions (PA,SA) and (az,€l)
Get Sun 10 | get AD-readings of g0..g3 of sun sensor

Get Mem 11| get nb bytes starting at adr

Set Mem 12 | writeto memory 1, 2 or 4 bytes

Fi ndZer o 13 | start search zero mark on specified axis
ChkAxi s 14 | get status of both axis

Get Log 15| get n-th line of log or clear log.

RunMbt 16 | disable/enable normal operation, run motors in test-mode
Get ADC 17| get all ADC-signasin mode raw, volt or phys
Set Loghvbde 18 | set Log-mode

2.2 Proceduresin Rpc_2.dll

All remote procedures shown in 2.1 are callable from Rpc_2.dll — plus a PC-local procedure as follows:

Reset Li nk 19|l ocal function to select COMI/F and its
configuration

Rpc_2.dIl was developed using Delphi 7.0 and we then tested it using V C++ working with Microsoft
Development Environment 2003, Version 7.1.3088.

In the download area of our website, you find afile yymmdd_dll_tests.zip (where yymmdd stands for the
date of the creation of the file). Unpack thisfile into afolder dll_tests. Thisfolder is a solution folder
containing 3 projects named ca0l..ca03. Each of these projects (simple VC++ console applications) isa
demonstration of the use of some of the routines of Rpc_2.dll. The library isincluded in the folder \res\ -
together with all resources the applications will need at run time. Y ou must include the path to this res-
folder into you path variable, otherwise the programs will report errors and crash.

One further hint: The interface to Rpc_2.dll is defined in Intra2Defs.h and implemented in
Intra2Defs.cpp. Both these files are in the ca01-folder. Y ou possibly must edit the properties of the other
projects to specify the correct path according to your present configuration to include the ca01-folder.

If you are going to use Rpc_2 you may skip the remaining paragraphs of this chapter 2 and continue with
the detailed description of the routines given in chapter 3.

2.3 Data Structures and Protocol

The remote procedure calls are all implemented for the program ifw — the firmware that currently runsin
INTRAS controller. Note that the controller is an arm processor and as such operated using the little
endian convention. On the other hand, RPC specifications require big endian. Thiswill force usto
perform some byte inversions.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 2

Doc.-No. INTRA/SIDD/1827-BRU
B RUSAG Version: 1.03
Date: 18-Jun-2010

In line with RPC1831, the program definition for this rpc-application could be written as follows:

The arguments of the call of a procedure are packed into a structure of type rpc_msg as follows:

The above and al following definitionsin this paragraph follow RFC 1832. We briefly repeat the
essentials of these definitions:

?? Dataarehig endian —the MSB precedes the LSB — (but remember: our controller islittle
endian)

?? All datamust be assembled (and eventually padded with zeros) into multiples of 4 Bytes.

?? Thexid of aREPLY must match the xid of the corresponding call.

The structure of the call body is shown below:

and the reply-body is shown here:

and further expanded as:

File: G\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 3

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

opaque resul ts[0];
/*
* procedure-specific results start here
* use struct rProcNanme {..}
*/
case PROG_M SMATCH: /1 between program of caller and target
struct {
unsi gned int | ow
unsi gned i nt hi gh;
} m smatch_i nfo;
defaul t:
/*
* Void. Cases include PROG UNAVAI L, PROC_UNAVAIL,
* GARBAGE_ARGS, and SYSTEM ERR
>/
voi d;
} reply_data;

union rejected_reply switch (reject_stat stat) {
case RPC M SMVATCH:

struct {
unsi gned int | ow /* | owest protocol version = 2 */
unsi gned i nt hi gh; /* highest is 2 as well */

} m smatch_info;
case AUTH ERROR:

aut h_stat stat;
Ji ¢

24 Thetransport protocol EDLP

For transmission, a RPC data structure is framed between stx and etx. A byte stuffing mechanism ensures
that these two characters do never occur in the transmitted characters. Byte-stuffing for transmission is as
follows:

Data Substitution

dle 10h dle'D’ 10h, 44h
stx 02h de'S 10h, 53h
etx 03h de‘'FE 10h, 45h

During transmission, a checksum — the sum of all characters of the original packet is computed. The twos
complement of this value — possibly with byte stuffing — is then inserted in the data stream and the packet
is closed by sending the terminating etx.

Upon reception, the leading stx-character is dropped and the data stream is destuffed according to the
above table. A packet is considered complete when the terminating etx-charactersis received. The
checksum that was previously computed from the destuffed data must now be zero, otherwise, it is
considered a checksum error.

A packet with a checksum error is silently trashed. Furthermore — an unexpected stx received during
reception of a packet causes the current packet to be silently trashed and a new packet is started.

Transmission isinitiated by the host only. If the server does not answer within a specified interval of
time, the transmission is repeated 3 times and then a communication timeout error is reported (global

flag).

Note that this protocol allows for normal terminal 1/0 on the same lines as the remote procedure calls.
Everything that is not framed between stx/etx is considered normal terminal 1/0. The current INTRA
firmware uses this to output diagnostics messages.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 4

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

3 Detailed Description of Procedures

Prior to go into full depth, aremark isin order:IntraCfg.exe is a utility that is available from our web
site. It allows a user to communicate with and configure an INTRA for use without having to deal with
all these RPC-issues. However, if you want to integrate tracker-supervising or even tracker-handling into
your own code, use Rpc_2.dll.

Ok, back to the procedures. All procedure return an integer value of O if no errors were encountered. The
interpretation of a non-zero result is according to the following enumeration:

ESt at us =(ok, argerr, chkserr, cnderror, verserror, iderror,
bcerror, rtineout, rpending);

where

ok: no error

argerr there was a problem with one or more arguments
chserr irrevocable errors during transmission (either way)
cmderr version error (not used)

iderror id-error (not used)

bcerror mismatch of byte-count occurred

rtimeout no answer within specified interval of time
repending waiting for answer

In the following description we use a notation that deviates somewhat from standard C in that each
argument gets an attribute: in, out or var. Clearly, in-arguments are part of the call only, out-arguments of
the answer and var-arguments go both ways. Arguments are always by value — both in the call-list as well
asin the answer-list. But this "by value-rule" applies for the transport on the serial link only. Locally
(and when using Rpc_2.dll), the call follows C-conventions (or whatever language you are using). Thisis
best illustrated with the WhoAmi-routine below: Both arguments are pointers that tell the called routine
where to store the results. When calling the remote implementation of WhoAml, the calling record isa
structure of type call_body without specific user data (empty). The information contained in the calling
record is sufficient to tell the remote computer what it should do. It will return areply-body containing a
32bit integer (the version of the remote program) and an XDRstr (see below), a string that will locally be
converted to anull terminated string and be stored to where (the contents of) txt points.

31 WhoAml

int WhoAm (int* v:out char* txt:out);

% version of the remote program (interpret it as hex e. g. 0x101 is Version 1.01)

txt apointer, pointing to the address where the returned zero-terminated string is. It should be
copied from there to your local variables:
The calling structure of user datais empty:

struct cWioAm {void}; /'l enpty used data upon call

The returned user data are

struct rWhoAm {
int v;

XDRstr txt;

I

XDRstr is a 32bit integer specifying the number n of bytesto follow. Then the characters of the string
follow and possibly some filler bytes to make the string length a multiple of 4. The number n does not
include thesefiller bytes.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 5

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

32 Set ROMP

Configuration parameters of the tracker as well as site and other parameters are stored in a nonvolatile
storage area. A working copy of these parametersis maintained in RAM. We thus need three routines:
One to upload the parametersto RAM, an other to download these parameters e. g. for editing and
finaly aroutine that reads or writes the parameters from EROM to RAM or vice versa. The EROM is
implemented as alinked list in ablock of the flash of the AT91SAM7x512 processor.

The type of the ROM-datais of type IROM (for INTRA-ROM) and is defined as follows:

typedef struct irom{

| ROVWPtr next; // is all ones if this iromis valid

unsi gned int Vers; // identifies version of this structure

fl oat serno; // serial nunber coded as intra.el ectronics

int aofs[2]; /| offsets of PA and SA in encoder counts.

int range[2][2]; /lrange[axi s, | ow. .high] in encoder counts

float gears[2]; /] ratios of gears PA and SA. Total ratio
nmotors to axis (including wormdrive)

int tenf?2]; /| coefficients for target control | oop,
mul tiply

int tcd[2]; /'l coefficients for target control |oop -
di vi de

int scnf?2]; /| coefs for speed-control multiply

int scd[2]; /| coefs for speed-control - divide

float sofs[2]; /| offsets [arc] of sun nonitor PA and SA

float |o; /'l extraterrestrial signal of sun sensor

float signg; /1 coef. of extinction

float |owel ev; /'l measurenents bel ow are jettisoned

float sunrange[2]; /1 lower limt of normalized signal and min

/1 [l azimuth- range data nust show to be
/| considered valid

float sunfrac; // analize data if nobre data than fraction in
[1imts[2]

float sun2rad /1 rwb 100303 converts sunsensor signals to
/] radians. Vers becones 0x101 now

int serpa; /| coded paraneters for UARTO and UART1

float alp[3]; /1 alignment paranmeters zenith (zd, az) and
/1 alignment offset of PA. [rad]

float site[3]; [l latitude , longitude both in [rad] and
/1 height [n]. Convention: N> 0, E >0

unsigned int thits; /] bitw se assignnent for test-output — see
/'l trackdef. def

i nt ChkSum /! twos conpl enent of all preceding data

} irom

The serial parameters serpa allow to select the baud rate — all other serial parameters are firm and fix: 8
bit data, 1 stop bit, no parity and no handshake. The baud rate for UARTO is coded in bits (0: 19200, 1:
38400; 2: 57600 and 3: 115200). serpa=0 defaults to 9600. Decoding starts with the Isb and the baud
rate according to the first nonzero bit is put into effect. Similarely for UART1 which starts at bit 16 for
19200 etc. (Warning: presently only tested for 57600 bps, 8, 1, n)

The function to upload the parameter to the trackers RAM is:
i nt Set ROVP(| ROM rom:in) ;
rom of type IROM is the structure containing all tracker- and site-specific data

The call-user data are

struct cSet ROWP {
| ROM r om

}

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 6

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

and upon return

struct rSet ROWP {
voi d;

33 GetROMP
int Get ROW(IROM *romout, int ronstatus:out);

when calling GetROMP, rom must point to a memory areathat is able to accommodate the type IROM.

The calling structure cGetROMP is empty. The return-structure includes the ROM-data and a status.
This statusis the result of GetROMP and is coded as follows:

bit Description
1 Datavalid, but defaults only
2 checksum-error. Data not valid.

struct cGet ROWP {
voi d

I

and the returned data are:

struct rGet ROWP {
| ROM r om
int ronstatus; //returned as result of Get ROW

34 ROMPrw

int ROWPrwint wite:in, int error:out);

if writeis 1, the working copy of type IROM iswritten from RAM to ROM (),
if writeis 2, therom iserased ()
else the direction isfrom ROM to RAM ().

A zeroisreturned in error if the operation was successful, otherwise the result of the function is 1.

struct crROWrw { // identical for call and return
int wite_error; /1 direction upon call, result of operation upon return

35 SetDateTime

int SetDateTine(datetine_t datetine:in);
where

typedef struct datetine_t {

int yy, nm dd; [/l year e. g. 2009, nonth and day
int hh, m, sec; //hour, mnutes and seconds
int dow; /1 day of the week (not used by firnmnare)
} datetine_t; /[l dow = [1..7], typically 1 is interpreted as
/1 Sunday

The routine sets the RTC according to the arguments specified. Note that the year should be specified as
afour digit number, because otherwise, the century-flag of the RTC can not be handled correctly.

struct cSetDateTine {
datetine t datetine;

}

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 7

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

The routine returns nothing, hence rSetDateTime is empty.

3.6 GetDateTime

int GetDateTine(datetime_t *datetine: out)

The call-structure is empty and for the return data structure, the type cSetDateTime shall be assumed.

3.7 SetMode

i nt Set Mode(node_t node:in, int *err:out)

The type Tmode isan enumeration (I NI T, SUN, CLOCK, REMOTE, TEST).
If mode > REMOTE an err of 1isreturned — otherwise err of O isreturned.

Two remarks arein order:

When the current mode is INIT, the user should firstly verify that the current position isvalid
prior to commanding any other mode. Failure to do so could result in damages to the tracker,
because the axis limit might not work as intended.

The TEST-mode should not be commanded externally. It is set internaly (by the tracker) during
special operations. An attempt to set the mode to TEST using SetModeisignored and err = 1 is
returned.

The call- and return data structures are the same — a 32bit-word goes up (mode) and a 32-bit word comes
back (err).

3.8 GetMode

voi d Get Mbde(node_t *npde: out, submt *subnode: out);

Thetype subm_t isan enumeration (DAY, EVENI NG, WAl T24, WAl TZERO, REW ND,
MORNI NG).

The call-data structure is empty. The reply data are

struct rGCet Mode {

nmode_t node; /'l coded into 32bit word
subm t subnode; /1 32bit word
3.9 SetPos

This routine should be called in mode REMOTE. If caled in INIT, it has no effect. If called in SUN or
CLOCK mode, its effect will be overritten by the program within arather short period of afew seconds
at maximum. (Note: It isfor safty reason that this routine does not force REMOTE-mode but |leaves
current mode untouched).

SetPos sets the target-angles accordingly. The angles are specified either in the astronomical system or in
the tracker system — depending on the value of the first parameter.

int SetPos(cosys_t cosys:in, float pl:in, float p2:in, int *err:out)
typedef enum { ASTRO, TRACKER} cosys t

SetPos interprets a cosys of 0 as ASTRO and any nonzero cosys as TRACKER.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 8

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

pl isthe azimuth or primary axis angle, p2 the elevation or secondary axis setting. Angles are specified
in radians.

If aposition outside the allowed range of an axis is commanded, the target is set accordingly, but the
corresponding axis will stop aits limit of range.

struct cSetPos {
Tcosys cosys;

float pl, p2;
}
struct rSetPos {
int err; // result of function
}
3.10 GetPos
voi d Get Pos(npbde_t *nmpbde, submt *subm
polarf _t *astro_trg:out, /Il target-az,el astro-system|[rad]
polarf _t *track-trg:out, /1 target-PA SA tracker-system [rad]
polarf _t *astro_cur:out, /1 current az,el astro-system [rad]
polarf _t *track_cur:out, /1 current PA, SA tracker-system [rad]
polari _t *ecounts: out, /1 current encoder counts PA, SA [cnts]
pol ari _t *hcounts: out) /1 current hall-counts PA SA [cnts]

returns mode and submode, target- and current positions in various systems/units.

The type polarf_t is atwo-element vector of float elements (see below) and polari_t is a two-element
vector of int elements (Both float and int are 32 bits, float is according to | EEE).

typedef struct polarf_t {

float v[2];
} polarf_t;

The call structure is empty. The response-structure contains 8 float and 4 integers starting with
astro_trg.v[0] and ending with hcounts.v[1];

311 GetSun

Figure 1
Front view of the quadrants of the sun detector. The numbers indicated
are pins of the sensor/connector resp.

void GetSun(int *q:out);
return intensity-values of the 4 quadrants of the tracker. Units are Volts [0.0..3.3].

The call-structure is empty.

struct rGetSun {
float q[4];

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 9

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

312 GetMem
int Get Mem(WORD32 adr:in, int n:in, char *bytes:out);

GetMem returns n bytes from memory, starting at adr. n must be in the range [0..128]. If it exceeds these
limits, it is cut down accordingly.

struct cGet Mem {
int adr;
int n;

}

struct rGet Mem {
char bytes[n]; /'l n dat a-bytes
char filler<>; // 0to 3 filler bytes to get a multiple of 4 bytes

}
313 SetMem

int Set Menm(WORD32 adr:var, int n:var, WORD32 bytes:var);

SetMem writes (n=1,2 or4) bytes to the memory, starting at address adr. Independent of n=1,2 or 4,
bytesis always transmitted as a full 32-bit word — but the 8 Isb, 16 Isb or al 32 bits are valid resp.
Unused bits are cleared.

Upon return and if invoked with positive n, adr contains the address that it has written to, n contains an
errorflag (O if ok) and bytes contains the value written to adr. The call and response structures are thus
the identical:

struct c/rSet Mem {
WORD32 adr ;
int n;
WORD32 byt es;

}

A specia mode supporting testsis available when n < 0. The argument adr upon call forn<0is
irrelevant and depending on the value of n, bytesis written to a predefined variable. Upon return, adr
then contains the address of this variable, n an error-flag and bytes the (unmodified) value written to the
variable. Currently only one such test variable is defined for

n=-1:. Heatertest

Thevaluein bytesiswritten to avariable "testgrad” (valueisin degrees C). This alters the flow of the
periodic heater-control-task. If it finds testgrad != 0 it uses’ this value (as temperature in degrees C)
instead of the temperature read from the ADC to control the PWM of the heater.

3.14 FindZero

int FindZero(int search:in, int error:out);
start search of zero marks. Bitsin search are used to signal which axis and in which direction the search
should be started. The coding of the bitsis based on the enumeration type tflags

typedef enumtflags {

PAccwsearch = 1, /] ccwis the standard way
PAcwsearch = 2, /'l will search for a negative edge of the z-
si gnal

% testgrad is cleared during program startup.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 10

Doc.-No. INTRA/SIDD/1827-BRU

B RUSASG Version: 1.03

Date: 18-Jun-2010

PAzer onot f ound = 4, /1 nmoved to end of nove-interval

PAzer of ound = 8, /'l success - the flag was seen

PAhe_m smatch = 0x10, /1 hall/encoder m smatch

PAposval i d = 0x20, /'l zero-operation was successful or nvv-val ues

/1 ok
/1 SA uses the sane flags - just rotated left 8 bits.
SAccwsear ch = 0x100, /'l and the sane for the SA

SAcwsear ch = 0x200,
SAzer onot f ound = 0x400,
SAzer of ound = 0x800,

SAhe_mi smat ch = 0x1000,
SAposval i d = 0x2000,

Force32 = 0x80000000} tfl ags;

Clearly, only a set formed with one or a pair of the search-flags PAccwsearch, PAcwsearch and
SAccwsearch, SAcwsearch makes sense for FindZero. If non of these bitsis set, the call is anop, but will
return 1. The routine simply triggers the search, forces mode INIT and returns. The axis then start to
move in the specified direction until the zero mark is encountered or a path of app. 15° has completed.

struct c/rFindZero {
int search; //search is replaced by an error-variabl e upon return

}
3.15 ChkAxis

voi d ChkAxi s(int *status:out);

The status returned is bit-coded as a set of tflags — see also FindZero:

The call-structure is empty, return-structure holds the 4-byte quantity status.

3.16 GetLog/ Clearlog

void GetLog(int n:in, char *txt:out);

GetL og returns the n” line of the message-log in string. Linecount starts with zero. The cr —and if
present in the log — also the If are included in string. An empty string signifies the end of the log buffer.
For efficiency considerations, this routine should be called in aloop where n grows from zero until an
empty string is returned.

When calling GetL og with a negative n, the log-buffer is cleared and an empty string is returned.

struct cGetlLog {
int n;

}

struct rGetlLog {
XDRstr txt; /] see al so WioAm for an expl anati on of XDRstr

}
3.17 RunMotors

int RunMotors(int flag:in, int panot:in, int sanot:in);

This routine allows to operate or stop any of the motors. The argument flag is interpreted as a boolean. If
it is unequal zero, the modeis set to TEST and the two motors get a dutycycle as specified in pamot and
samot. Dutycycles are specified in ppm — including the sign of the motion. Hence pamot and samot
should fall in the range [-999999...999999].

If flag is zero, the mode is reset to INIT and both motors are stopped.

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 11

Doc.-No. INTRA/SIDD/1827-BRU

B R USAG Version: 1.03
Date: 18-Jun-2010

The call-structure contains three 32-bit words, flag, pamot and samot. The response-structure is empty.

3.18 GeADC
int Get ADC(tsig signode:in, float *sigs:out);

GetADC returns the ADC-values of the 8 channels of the 10-bit ADC of the controller. The data are
either in raw AD-counts, Volts or converted to physical signals— according to the channel. The values
returned are mean values of a period of 100 ms (50Hz) or 95.24 ms (63 Hz). The routine returns the
currently valid readings (which are updated at arate of 100ms or 95.24 msresp.). The full scale of the
ADC correspondsto 3.3 V.

typedef enumtsig {eRAW eVOLT, ePHYS} tsig; // node of signals from adc

channel assignments are:

ch | Signal Units | Description

0: |UPWR VDC | DC power (24 VDCnom) from avoltage divider

1. |UTEMP |°C KTY 13-6-based temperature sensor of board temperature
2. |UCURO |mA current from base-shunt of motorO-driver

3: |UCURL |mA current from base-shunt of motor1-driver

4. 1q0)Y Signal from sun-sensor quadrant O

5 |gl)Y Signal from sun-sensor quadrant 1

6: |92)Y Signal from sun-sensor quadrant 2

7. |93)Y Signal from sun-sensor quadrant 3

The call-structure of GetADC contains the 32-bit quantity sigmode. The response-structure contains an
8-elelemt array of float-types sigg[0]..sig97].

319 SetlLogMode

i nt Set LogMbde(tl ogm | ognew in, tlogm *| ogwas: out);

SetlogMode sets the loglevel specified in lognew and return the previous log-level in logwas.

typedef enum tl ogm { SEVERE, SHORT, EXTENSI VE} tl|ogm

The call- and response structure are identical: In both cases a single 32-bit variable - lognew upon call
and logwas upon return.

3.20 ResetLink (Rpc_2.dll only)

i nt ResetLink(TSerial consettings:in);

Thisisastrictly local routine. It selects the com-port of the serial link and its configuration. Nothing is
transmitted to the remote site. Presently, the function always returns zero — independent of possible
problems. Thetype TSerid is defined as follows:

typedef struct TSerial { /Il settings for PC, all except conx from
/1 SerCfg
i nt baud; /1 e.g. 57600 bps
char conx; /] COM nunber 1..8
char dat a; /'l nunber of bits 4..8
char parity; /1 0-4=none, odd, even, nar k, space
char st op; /l 0,1,2 =1, 1.5, 2
unsi gned int tineout; /[l timeout in ns
} TSerial;

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 12

Doc.-No. INTRA/SIDD/1827-BRU

B RUSASG Version: 1.03
Date: 18-Jun-2010

4 Glossary

[rad] arc units (radians) — full rotationis2 p

[°] degrees — full rotation is 360 °

[cnts] dimensionless quantity — typically a counter

PA Primary Axis (vertical axis of tracker) — loosely corresponding (depending on the quality of
theinitial alignment during installation) to the azimuth axis.

SA Secondary Axis (horizontal axis of tracker — moving with the PA) - loosely corresponding

(depending on the quality of the initial alignment during installation) to the elevation axis

- end of text -

File: G:\\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 13

