

ph: +4144 926 74 74 web: www.brusag.ch em: rbrusa@brusag.ch fx: +4144 926 73 34

B • R • U • S • A • G

Sensorik & messtechnische Entwicklungen AG

Chapfwiesenstrasse 14

CH-8712 Stäfa (Switzerland)

INTRA

Software Interface Definition Document

(SIDD)

BRUSAG Ref: INTRA/SIDD/1827-BRU Version 1.03 of 18-Jun-2010

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc i

Change Record

Date Version Who Description

08-Jul-08 1.00 RB Draft started

02-Jul-09 1.01 RB doc updated according to existing soft- and firmware resp.

03-Mar-10 1.02 RB new parameter sun2rad in IROM – which now gets version 0x101

18-Jun-10 1.03 RB Additional material on dynamic library Rpc_2.dll added

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc ii

Table of Contents

1 Introduction 1

1.1 Scope of this Document 1

1.2 References 1

2 Remote Procedures 2

2.1 Overview of Procedures 2

2.2 Procedures in Rpc_2.dll 2

2.3 Data Structures and Protocol 2

2.4 The transport protocol EDLP 4

3 Detailed Description of Procedures 5

3.1 WhoAmI 5

3.2 Set ROMP 6

3.3 GetROMP 7

3.4 ROMPrw 7

3.5 SetDateTime 7

3.6 GetDateTime 8

3.7 SetMode 8

3.8 GetMode 8

3.9 SetPos 8

3.10 GetPos 9

3.11 GetSun 9

3.12 GetMem 10

3.13 SetMem 10

3.14 FindZero 10

3.15 ChkAxis 11

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 3

3.16 GetLog / Clearlog 11

3.17 RunMotors 11

3.18 GetADC 12

3.19 SetLogMode 12

3.20 ResetLink (Rpc_2.dll only) 12

4 Glossary 13

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 1

1 Introduction

1.1 Scope of this Document

This document defines the software interface between INTRAs controller and a PC resident software.
The interface is based on remote procedure calls. We will use and follow as closely as possible – the
standards set for remote procedure calls in and by various RFCs.

Our first implementation of the RPC mechanism for the new controller will however not use TCP/IP as
transport mechanism, but a much simpler protocol used for serial links. We already used this protocol1
before for INTRA (firmware version 2.48) and more recently for MetNevis.[1]

Most users will however not be willing to have to deal with the details of the protocol described in this
document. They will instead use our dynamic library (presently Rpc_2.dll) which provides a software-
interface while hiding all lower level details. But even for these people, this document has something to
offer: Descriptions of the in- and outs- of the procedures included in RPC_2.dll. And these are all of the
remote procedures specified here plus a PC-local procedure (ResetLink) which allows to select the local
COM-interface and its configuration.

1.2 References

ID Title Version & Date Doc-ID
1 MetNivis – Software Interface Definition Document

R. Brusa, BRUSAG CH-8712 Stäfa
18-Sep-06 SNOW/SIDD/

427-BRU
1 AT91 ARM Thumb-based Microcontrollers

AT91SAM7X512, AT91SAM7X256, AT91SAM7X128
08-Oct-07 6120G–ATARM

2 Circuit Drawing INTRA Controller Board V2 June 2008 -
3 INTRA Software Definition Document (SDD)

R. Brusa, BRUSAG CH-8712 Stäfa
V 1.00 2-Jul-08 INTRA/SDD/

1826-BRU
4 INTRA Software Interface Definition Document (SIDD)

R. Brusa, BRUSAG CH-8712 Stäfa (this doc)
V 1.02 03-Mar-10 INTRA/SIDD/

1827-BRU
5 Explanatory Supplement to the Astronomical Almanac;

Seidelmann, P. Kenneth, Ed. University Science Books
Mill Valley CA 94941

1992 ISBN 0-935702-
68-7

6 RPC: Remote Procedure Call Protocol Specification
Version 2.;
R. Srinivasan, Status: PROPOSED STANDARD

August 1995

RFC 1831

7 XDR: External Data Representation Standard;
R. Srinivasan. Status: DRAFT STANDARD

August 1995 RFC 1832

8 Binding Protocols for ONC RPC Version 2;
R. Srinivasan. Status: PROPOSED STANDARD

August 1995 RFC 1833

9 Authentication Mechanisms for ONC RPC;
A. Chiu. Status: INFORMATIONAL

September 1999 RFC 2695

1 EDLP ESTEC Data link protocol

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 2

2 Remote Procedures

2.1 Overview of Procedures

Name enum Description
WhoAmI 0 returns firmware-identifying string
SetROMP 1 upload rom-parameters to ram
GetROMP 2 download rom-parameters from ram
ROMPrw 3 rom parameters ram_copy r<-->w erom
SetDateTime 4 set RTC - date and time of day
GetDateTime 5 get date and time of day from RTC
SetMode 6 set mode INIT, SUN, CLOCK or REMOTE
GetMode 7 get current mode and submode
SetPos 8 set new targets
GetPos 9 get mode and positions (PA,SA) and (az,el)
GetSun 10 get AD-readings of q0..q3 of sun sensor
GetMem 11 get nb bytes starting at adr
SetMem 12 write to memory 1, 2 or 4 bytes
FindZero 13 start search zero mark on specified axis
ChkAxis 14 get status of both axis
GetLog 15 get n-th line of log or clear log.
RunMot 16 disable/enable normal operation, run motors in test-mode
GetADC 17 get all ADC-signals in mode raw, volt or phys
SetLogMode 18 set Log-mode

2.2 Procedures in Rpc_2.dll

All remote procedures shown in 2.1 are callable from Rpc_2.dll – plus a PC-local procedure as follows:

ResetLink 19 local function to select COM-I/F and its
configuration

Rpc_2.dll was developed using Delphi 7.0 and we then tested it using VC++ working with Microsoft
Development Environment 2003, Version 7.1.3088.

In the download area of our website, you find a file yymmdd_dll_tests.zip (where yymmdd stands for the
date of the creation of the file). Unpack this file into a folder dll_tests. This folder is a solution folder
containing 3 projects named ca01..ca03. Each of these projects (simple VC++ console applications) is a
demonstration of the use of some of the routines of Rpc_2.dll. The library is included in the folder \res\ -
together with all resources the applications will need at run time. You must include the path to this res-
folder into you path variable, otherwise the programs will report errors and crash.

One further hint: The interface to Rpc_2.dll is defined in Intra2Defs.h and implemented in
Intra2Defs.cpp. Both these files are in the ca01-folder. You possibly must edit the properties of the other
projects to specify the correct path according to your present configuration to include the ca01-folder.

If you are going to use Rpc_2 you may skip the remaining paragraphs of this chapter 2 and continue with
the detailed description of the routines given in chapter 3.

2.3 Data Structures and Protocol

The remote procedure calls are all implemented for the program ifw – the firmware that currently runs in
INTRAs controller. Note that the controller is an arm processor and as such operated using the little
endian convention. On the other hand, RPC specifications require big endian. This will force us to
perform some byte inversions.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 3

In line with RPC1831, the program definition for this rpc-application could be written as follows:

 program ifw {
 /*
 * Latest and greatest version
 */
 version INTRA_RPC {
 void WhoAmI(string progname, int v) = 0;
 void SetRomE(EEPROM prom) = 1;
 /*
 * write prom-data into rom-proxy area in RAM
 */
 void GetRomP(EEPROM* promp) = 2;
 ……and more
 } = 1;

The arguments of the call of a procedure are packed into a structure of type rpc_msg as follows:

 struct rpc_msg {
 unsigned int xid; // counter to identify call
 union switch (msg_type mtype) {
 case CALL:
 call_body cbody;
 case REPLY:
 reply_body rbody;
 } body;
 };

The above and all following definitions in this paragraph follow RFC 1832. We briefly repeat the
essentials of these definitions:

?? Data are big endian – the MSB precedes the LSB – (but remember: our controller is little
endian)

?? All data must be assembled (and eventually padded with zeros) into multiples of 4 Bytes.
?? The xid of a REPLY must match the xid of the corresponding call.

The structure of the call body is shown below:

 struct call_body {
 unsigned int rpcvers; /* must be equal to two (2) */
 unsigned int prog; /* 20000000h...3fffffffh use 23456789h

*/
 unsigned int vers; /* of remote prog */
 unsigned int proc; /* identifies procedure */
 opaque_auth cred; /* credentials : use AUTH_NONE = 0 */
 opaque_auth verf; /* verification: use AUTH_NONE */
 /* procedure specific parameters start here */
 };

and the reply-body is shown here:

 union reply_body switch (reply_stat stat) {
 case MSG_ACCEPTED:
 accepted_reply areply;
 case MSG_DENIED:
 rejected_reply rreply;
 } reply;

and further expanded as:

 struct accepted_reply {
 opaque_auth verf;
 union switch (accept_stat stat) {
 case SUCCESS:

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 4

 opaque results[0];
 /*
 * procedure-specific results start here
 * use struct rProcName {..}
 */
 case PROG_MISMATCH: // between program of caller and target
 struct {
 unsigned int low;
 unsigned int high;
 } mismatch_info;
 default:
 /*
 * Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,
 * GARBAGE_ARGS, and SYSTEM_ERR.
 */
 void;
 } reply_data;
 };

 union rejected_reply switch (reject_stat stat) {
 case RPC_MISMATCH:
 struct {
 unsigned int low; /* lowest protocol version = 2 */
 unsigned int high; /* highest is 2 as well */
 } mismatch_info;
 case AUTH_ERROR:
 auth_stat stat;
 };

2.4 The transport protocol EDLP

For transmission, a RPC data structure is framed between stx and etx. A byte stuffing mechanism ensures
that these two characters do never occur in the transmitted characters. Byte-stuffing for transmission is as
follows:

Data Substitution
dle 10h dle ‘D’ 10h, 44h
stx 02h dle ‘S’ 10h, 53h
etx 03h dle ‘E’ 10h, 45h

During transmission, a checksum – the sum of all characters of the original packet is computed. The twos
complement of this value – possibly with byte stuffing – is then inserted in the data stream and the packet
is closed by sending the terminating etx.

Upon reception, the leading stx-character is dropped and the data stream is destuffed according to the
above table. A packet is considered complete when the terminating etx-characters is received. The
checksum that was previously computed from the destuffed data must now be zero, otherwise, it is
considered a checksum error.

A packet with a checksum error is silently trashed. Furthermore – an unexpected stx received during
reception of a packet causes the current packet to be silently trashed and a new packet is started.

Transmission is initiated by the host only. If the server does not answer within a specified interval of
time, the transmission is repeated 3 times and then a communication timeout error is reported (global
flag).

Note that this protocol allows for normal terminal I/O on the same lines as the remote procedure calls.
Everything that is not framed between stx/etx is considered normal terminal I/O. The current INTRA
firmware uses this to output diagnostics messages.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 5

3 Detailed Description of Procedures

Prior to go into full depth, a remark is in order:IntraCfg.exe is a utility that is available from our web
site. It allows a user to communicate with and configure an INTRA for use without having to deal with
all these RPC-issues. However, if you want to integrate tracker-supervising or even tracker-handling into
your own code, use Rpc_2.dll.

Ok, back to the procedures. All procedure return an integer value of 0 if no errors were encountered. The
interpretation of a non-zero result is according to the following enumeration:

 EStatus =(ok, argerr, chkserr, cmderror, verserror, iderror,
 bcerror, rtimeout, rpending);
where
ok: no error
argerr there was a problem with one or more arguments
chserr irrevocable errors during transmission (either way)
cmderr version error (not used)
iderror id-error (not used)
bcerror mismatch of byte-count occurred
rtimeout no answer within specified interval of time
repending waiting for answer

In the following description we use a notation that deviates somewhat from standard C in that each
argument gets an attribute: in, out or var. Clearly, in-arguments are part of the call only, out-arguments of
the answer and var-arguments go both ways. Arguments are always by value – both in the call-list as well
as in the answer-list. But this "by value-rule" applies for the transport on the serial link only. Locally
(and when using Rpc_2.dll), the call follows C-conventions (or whatever language you are using). This is
best illustrated with the WhoAmi-routine below: Both arguments are pointers that tell the called routine
where to store the results. When calling the remote implementation of WhoAmI, the calling record is a
structure of type call_body without specific user data (empty). The information contained in the calling
record is sufficient to tell the remote computer what it should do. It will return a reply-body containing a
32bit integer (the version of the remote program) and an XDRstr (see below), a string that will locally be
converted to a null terminated string and be stored to where (the contents of) txt points.

3.1 WhoAmI

int WhoAmI (int* v:out char* txt:out);

v version of the remote program (interpret it as hex e. g. 0x101 is Version 1.01)

txt a pointer, pointing to the address where the returned zero-terminated string is. It should be
copied from there to your local variables:

The calling structure of user data is empty:

struct cWhoAmI {void}; // empty used data upon call

The returned user data are

struct rWhoAmI {
 int v;
 XDRstr txt;
};

XDRstr is a 32bit integer specifying the number n of bytes to follow. Then the characters of the string
follow and possibly some filler bytes to make the string length a multiple of 4. The number n does not
include these filler bytes.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 6

3.2 Set ROMP

Configuration parameters of the tracker as well as site and other parameters are stored in a nonvolatile
storage area. A working copy of these parameters is maintained in RAM. We thus need three routines:
One to upload the parameters to RAM, an other to download these parameters e. g. for editing and
finaly a routine that reads or writes the parameters from EROM to RAM or vice versa. The EROM is
implemented as a linked list in a block of the flash of the AT91SAM7x512 processor.

The type of the ROM-data is of type IROM (for INTRA-ROM) and is defined as follows:

typedef struct irom {
 IROMPtr next; // is all ones if this irom is valid
 unsigned int Vers; // identifies version of this structure
 float serno; // serial number coded as intra.electronics
 int aofs[2]; // offsets of PA and SA in encoder counts.
 int range[2][2]; //range[axis,low..high] in encoder counts
 float gears[2]; // ratios of gears PA and SA. Total ratio

motors to axis (including worm drive)
 int tcm[2]; // coefficients for target control loop,

multiply
 int tcd[2]; // coefficients for target control loop -

divide
 int scm[2]; // coefs for speed-control multiply
 int scd[2]; // coefs for speed-control - divide
 float sofs[2]; // offsets [arc] of sun monitor PA and SA
 float Io; // extraterrestrial signal of sun sensor
 float sigma; // coef. of extinction
 float lowelev; // measurements below are jettisoned
 float sunrange[2]; // lower limit of normalized signal and min

// // azimuth- range data must show to be
// considered valid

 float sunfrac; // analize data if more data than fraction in
// limits[2]

 float sun2rad // rwb 100303 converts sunsensor signals to
// radians. Vers becomes 0x101 now

 int serpa; // coded parameters for UART0 and UART1
 float alp[3]; // alignment parameters zenith (zd,az) and

// alignment offset of PA. [rad]
 float site[3]; // latitude , longitude both in [rad] and

// height [m]. Convention: N > 0, E > 0
 unsigned int tbits; // bitwise assignment for test-output – see

// trackdef.def
 int ChkSum; // twos complement of all preceding data
} irom;

The serial parameters serpa allow to select the baud rate – all other serial parameters are firm and fix: 8
bit data, 1 stop bit, no parity and no handshake. The baud rate for UART0 is coded in bits (0: 19200, 1:
38400; 2: 57600 and 3: 115200). serpa=0 defaults to 9600. Decoding starts with the lsb and the baud
rate according to the first nonzero bit is put into effect. Similarely for UART1 which starts at bit 16 for
19200 etc. (Warning: presently only tested for 57600 bps, 8, 1, n)

The function to upload the parameter to the trackers RAM is:

int SetROMP(IROM rom:in);

rom of type IROM is the structure containing all tracker- and site-specific data

The call-user data are

struct cSetROMP {
 IROM rom;
}

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 7

and upon return

struct rSetROMP {
 void;
}

3.3 GetROMP

int GetROMP(IROM *rom:out, int romstatus:out);

when calling GetROMP, rom must point to a memory area that is able to accommodate the type IROM.

The calling structure cGetROMP is empty. The return-structure includes the ROM-data and a status.
This status is the result of GetROMP and is coded as follows:

bit Description
1 Data valid, but defaults only
2 checksum-error. Data not valid.

struct cGetROMP {
 void
};
and the returned data are:

struct rGetROMP {
 IROM rom;
 int romstatus; //returned as result of GetROMP
}

3.4 ROMPrw

int ROMPrw(int write:in, int error:out);

if write is 1, the working copy of type IROM is written from RAM to ROM (toIROM),
if write is 2, the rom is erased (eraseIROM)
else the direction is from ROM to RAM (fromIROM).
A zero is returned in error if the operation was successful, otherwise the result of the function is 1.

struct crROMPrw { // identical for call and return
 int write_error; // direction upon call, result of operation upon return
}

3.5 SetDateTime

int SetDateTime(datetime_t datetime:in);
where

typedef struct datetime_t {
 int yy, mm, dd; // year e. g. 2009, month and day
 int hh, mi, sec; //hour, minutes and seconds
 int dow; // day of the week (not used by firmware)
} datetime_t; // dow = [1..7], typically 1 is interpreted as

// Sunday

The routine sets the RTC according to the arguments specified. Note that the year should be specified as
a four digit number, because otherwise, the century-flag of the RTC can not be handled correctly.

struct cSetDateTime {
 datetime_t datetime;
}

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 8

The routine returns nothing, hence rSetDateTime is empty.

3.6 GetDateTime

int GetDateTime(datetime_t *datetime:out)

The call-structure is empty and for the return data structure, the type cSetDateTime shall be assumed.

3.7 SetMode

int SetMode(mode_t mode:in, int *err:out)

The type Tmode is an enumeration (INIT, SUN, CLOCK, REMOTE, TEST).

If mode > REMOTE an err of 1 is returned – otherwise err of 0 is returned.

Two remarks are in order:

- When the current mode is INIT, the user should firstly verify that the current position is valid
prior to commanding any other mode. Failure to do so could result in damages to the tracker,
because the axis limit might not work as intended.

- The TEST-mode should not be commanded externally. It is set internally (by the tracker) during
special operations. An attempt to set the mode to TEST using SetMode is ignored and err = 1 is
returned.

The call- and return data structures are the same – a 32bit-word goes up (mode) and a 32-bit word comes
back (err).

3.8 GetMode

void GetMode(mode_t *mode:out, subm_t *submode:out);

The type subm_t is an enumeration (DAY, EVENING, WAIT24, WAITZERO, REWIND,
MORNING).

The call-data structure is empty. The reply data are

struct rGetMode {
 mode_t mode; // coded into 32bit word
 subm_t submode; // 32bit word
}

3.9 SetPos

This routine should be called in mode REMOTE. If called in INIT, it has no effect. If called in SUN or
CLOCK mode, its effect will be overritten by the program within a rather short period of a few seconds
at maximum. (Note: It is for safty reason that this routine does not force REMOTE-mode but leaves
current mode untouched).

SetPos sets the target-angles accordingly. The angles are specified either in the astronomical system or in
the tracker system – depending on the value of the first parameter.

int SetPos(cosys_t cosys:in, float p1:in, float p2:in, int *err:out)

typedef enum {ASTRO, TRACKER} cosys_t

SetPos interprets a cosys of 0 as ASTRO and any nonzero cosys as TRACKER.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 9

p1 is the azimuth or primary axis angle, p2 the elevation or secondary axis setting. Angles are specified
in radians.

If a position outside the allowed range of an axis is commanded, the target is set accordingly, but the
corresponding axis will stop a its limit of range.

struct cSetPos {
 Tcosys cosys;
 float p1, p2;
}

struct rSetPos {
 int err; // result of function
}

3.10 GetPos

void GetPos(mode_t *mode, subm_t *subm,
 polarf_t *astro_trg:out, // target-az,el astro-system [rad]
 polarf_t *track-trg:out, // target-PA,SA tracker-system [rad]
 polarf_t *astro_cur:out, // current az,el astro-system [rad]
 polarf_t *track_cur:out, // current PA,SA tracker-system [rad]
 polari_t *ecounts:out, // current encoder counts PA,SA [cnts]
 polari_t *hcounts:out) // current hall-counts PA,SA [cnts]

returns mode and submode, target- and current positions in various systems/units.

The type polarf_t is a two-element vector of float elements (see below) and polari_t is a two-element
vector of int elements (Both float and int are 32 bits, float is according to IEEE).

typedef struct polarf_t {
 float v[2];
} polarf_t;

The call structure is empty. The response-structure contains 8 float and 4 integers starting with
astro_trg.v[0] and ending with hcounts.v[1];

3.11 GetSun

q0 q3

q1 q2

7/6 3/3

8/5 2/4

Figure 1
Front view of the quadrants of the sun detector. The numbers indicated
are pins of the sensor/connector resp.

void GetSun(int *q:out);

return intensity-values of the 4 quadrants of the tracker. Units are Volts [0.0..3.3].

The call-structure is empty.

struct rGetSun {
 float q[4];
}

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 10

3.12 GetMem

int GetMem(WORD32 adr:in, int n:in, char *bytes:out);

GetMem returns n bytes from memory, starting at adr. n must be in the range [0..128]. If it exceeds these
limits, it is cut down accordingly.

struct cGetMem {
 int adr;
 int n;
}

struct rGetMem {
 char bytes[n]; // n data-bytes
 char filler<>; // 0 to 3 filler bytes to get a multiple of 4 bytes
}

3.13 SetMem

int SetMem(WORD32 adr:var, int n:var, WORD32 bytes:var);

SetMem writes (n=1,2 or4) bytes to the memory, starting at address adr. Independent of n = 1,2 or 4,
bytes is always transmitted as a full 32-bit word – but the 8 lsb, 16 lsb or all 32 bits are valid resp.
Unused bits are cleared.

Upon return and if invoked with positive n, adr contains the address that it has written to, n contains an
errorflag (0 if ok) and bytes contains the value written to adr. The call and response structures are thus
the identical:

struct c/rSetMem {
 WORD32 adr;
 int n;
 WORD32 bytes;
}

A special mode supporting tests is available when n < 0. The argument adr upon call for n < 0 is
irrelevant and depending on the value of n, bytes is written to a predefined variable. Upon return, adr
then contains the address of this variable, n an error-flag and bytes the (unmodified) value written to the
variable. Currently only one such test variable is defined for

n = -1: Heatertest
The value in bytes is written to a variable "testgrad" (value is in degrees C). This alters the flow of the
periodic heater-control-task. If it finds testgrad != 0 it uses2 this value (as temperature in degrees C)
instead of the temperature read from the ADC to control the PWM of the heater.

3.14 FindZero

int FindZero(int search:in, int error:out);
start search of zero marks. Bits in search are used to signal which axis and in which direction the search
should be started. The coding of the bits is based on the enumeration type tflags

typedef enum tflags {
 PAccwsearch = 1, // ccw is the standard way
 PAcwsearch = 2, // will search for a negative edge of the z-

signal

2 testgrad is cleared during program startup.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 11

 PAzeronotfound = 4, // moved to end of move-interval
 PAzerofound = 8, // success - the flag was seen
 PAhe_mismatch = 0x10, // hall/encoder mismatch
 PAposvalid = 0x20, // zero-operation was successful or nvv-values

// ok
 // SA uses the same flags - just rotated left 8 bits.
 SAccwsearch = 0x100, // and the same for the SA
 SAcwsearch = 0x200,
 SAzeronotfound = 0x400,
 SAzerofound = 0x800,
 SAhe_mismatch = 0x1000,
 SAposvalid = 0x2000,
 Force32 = 0x80000000} tflags;

Clearly, only a set formed with one or a pair of the search-flags PAccwsearch, PAcwsearch and
SAccwsearch, SAcwsearch makes sense for FindZero. If non of these bits is set, the call is a nop, but will
return 1. The routine simply triggers the search, forces mode INIT and returns. The axis then start to
move in the specified direction until the zero mark is encountered or a path of app. 15° has completed.

struct c/rFindZero {
 int search; //search is replaced by an error-variable upon return
}

3.15 ChkAxis

void ChkAxis(int *status:out);

The status returned is bit-coded as a set of tflags – see also FindZero:

The call-structure is empty, return-structure holds the 4-byte quantity status.

3.16 GetLog / Clearlog

void GetLog(int n:in, char *txt:out);

GetLog returns the nth line of the message-log in string. Linecount starts with zero. The cr – and if
present in the log – also the lf are included in string. An empty string signifies the end of the log buffer.
For efficiency considerations, this routine should be called in a loop where n grows from zero until an
empty string is returned.

When calling GetLog with a negative n, the log-buffer is cleared and an empty string is returned.

struct cGetLog {
 int n;
}

struct rGetLog {
 XDRstr txt; // see also WhoAmI for an explanation of XDRstr
}

3.17 RunMotors

int RunMotors(int flag:in, int pamot:in, int samot:in);

This routine allows to operate or stop any of the motors. The argument flag is interpreted as a boolean. If
it is unequal zero, the mode is set to TEST and the two motors get a dutycycle as specified in pamot and
samot. Dutycycles are specified in ppm – including the sign of the motion. Hence pamot and samot
should fall in the range [-999999…999999].

If flag is zero, the mode is reset to INIT and both motors are stopped.

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 12

The call-structure contains three 32-bit words, flag, pamot and samot. The response-structure is empty.

3.18 GetADC

int GetADC(tsig sigmode:in, float *sigs:out);

GetADC returns the ADC-values of the 8 channels of the 10-bit ADC of the controller. The data are
either in raw AD-counts, Volts or converted to physical signals – according to the channel. The values
returned are mean values of a period of 100 ms (50Hz) or 95.24 ms (63 Hz). The routine returns the
currently valid readings (which are updated at a rate of 100ms or 95.24 ms resp.). The full scale of the
ADC corresponds to 3.3 V.

typedef enum tsig {eRAW, eVOLT, ePHYS} tsig; // mode of signals from adc

channel assignments are:

ch Signal Units Description
0: UPWR VDC DC power (24 VDCnom) from a voltage divider
1: UTEMP °C KTY13-6-based temperature sensor of board temperature
2: UCUR0 mA current from base-shunt of motor0-driver
3: UCUR1 mA current from base-shunt of motor1-driver
4: q0 V Signal from sun-sensor quadrant 0
5: q1 V Signal from sun-sensor quadrant 1
6: q2 V Signal from sun-sensor quadrant 2
7: q3 V Signal from sun-sensor quadrant 3

The call-structure of GetADC contains the 32-bit quantity sigmode. The response-structure contains an
8-elelemt array of float-types sigs[0]..sigs[7].

3.19 SetLogMode

int SetLogMode(tlogm lognew:in, tlogm *logwas:out);

SetLogMode sets the loglevel specified in lognew and return the previous log-level in logwas.

typedef enum tlogm {SEVERE, SHORT, EXTENSIVE} tlogm;

The call- and response structure are identical: In both cases a single 32-bit variable - lognew upon call
and logwas upon return.

3.20 ResetLink (Rpc_2.dll only)

int ResetLink(TSerial comsettings:in);

This is a strictly local routine. It selects the com-port of the serial link and its configuration. Nothing is
transmitted to the remote site. Presently, the function always returns zero – independent of possible
problems. The type TSerial is defined as follows:

typedef struct TSerial { // settings for PC, all except comx from
// SerCfg

 int baud; // e.g. 57600 bps
 char comx; // COM-number 1..8
 char data; // number of bits 4..8
 char parity; // 0-4=none,odd,even,mark,space
 char stop; // 0,1,2 = 1, 1.5, 2
 unsigned int timeout; // timeout in ms
 } TSerial;

 Doc.-No. INTRA/SIDD/1827-BRU
B • R • U • S • A • G Version: 1.03
 Date: 18-Jun-2010

File: G:\PROJEKTE\AT91g\Docs\SDD_SIDD\SIDD_1827_103.doc 13

4 Glossary

[rad] arc units (radians) – full rotation is 2 p
[°] degrees – full rotation is 360 °
[cnts] dimensionless quantity – typically a counter
PA Primary Axis (vertical axis of tracker) – loosely corresponding (depending on the quality of

the initial alignment during installation) to the azimuth axis.
SA Secondary Axis (horizontal axis of tracker – moving with the PA) - loosely corresponding

(depending on the quality of the initial alignment during installation) to the elevation axis

- end of text -

